Homological Pisot Substitutions and Exact Regularity
نویسندگان
چکیده
We consider one-dimensional substitution tiling spaces where the dilatation (stretching factor) is a degree d Pisot number, and the first rational Čech cohomology is d-dimensional. We construct examples of such “homological Pisot” substitutions whose tiling flows do not have pure discrete spectra. These examples are not unimodular, and we conjecture that the coincidence rank must always divide a power of the norm of the dilatation. To support this conjecture, we show that homological Pisot substitutions exhibit an Exact Regularity Property (ERP), in which the number of occurrences of a patch for a return length is governed strictly by the length. The ERP puts strong constraints on the measure of any cylinder set in the corresponding tiling space.
منابع مشابه
A long exact sequence for homology of FI-modules
We construct a long exact sequence involving the homology of an FI-module. Using the long exact sequence, we give two methods to bound the Castelnuovo–Mumford regularity of an FI-module which is generated and related in finite degree. We also prove that for an FImodule which is generated and related in finite degree, if it has a nonzero higher homology, then its homological degrees are strictly...
متن کاملA combinatorial approach to products of Pisot substitutions
We define a generic algorithmic framework to prove pure discrete spectrum for the substitutive symbolic dynamical systems associated with some infinite families of Pisot substitutions. We focus on the families obtained as finite products of the three-letter substitutions associated with the multidimensional continued fraction algorithms of Brun and Jacobi-Perron. Our tools consist in a reformul...
متن کاملVoronoi Cells of Beta-Integers
In this paper are considered one-dimensional tilings arising from some Pisot numbers encountered in quasicrystallography as the quadratic Pisot units and the cubic Pisot unit associated with 7-fold symmetry, and also the Tribonacci number. We give characterizations of the Voronoi cells of such tilings, using word combinatorics and substitutions.
متن کاملPisot substitutions and their associated tiles par
Let σ be a unimodular Pisot substitution over a d letter alphabet and let X1, . . . , Xd be the associated Rauzy fractals. In the present paper we want to investigate the boundaries ∂Xi (1 ≤ i ≤ d) of these fractals. To this matter we define a certain graph, the so-called contact graph C of σ. If σ satisfies Manuscrit reçu le 17 novembre 2004. The author was supported by project S8310 of the Au...
متن کاملBlock Maps between Primitive Uniform and Pisot Substitutions
In this article, we prove that for all pairs of primitive Pisot or uniform substitutions with the same dominating eigenvalue, there exists a finite set of block maps such that every block map between the corresponding subshifts is an element of this set, up to a shift. This result is proved using a common generalization of block maps and substitutions, which we call dill maps.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010